
1

A Software Environment for Developing Complex
Multiphysics Applications

http://www.esc.sandia.gov/sierra.html
http://www.cfd.sandia.gov/sierra.html

H. Carter Edwards
Principal Investigator for SIERRA Framework

Engineering Sciences Center
Sandia National Laboratories

Albuquerque, NM, USA

2

Applications Codes

Alliances

Computers

Problem
Solving

Environments

Verification
and

Validation

DisCom2

• Implements secure Tera-scale
computing across 1000s of miles

• Integrate information and
simulation

• Install distributed security and
resource management

• Provide the tools methodologies and
data to ensure that high-end simulation
capabilities reflect reality

• Establish confidence in the predictive
capabilities of ASCI tools

DOE’sDOE’s Accelerated Strategic Accelerated Strategic
Computing Initiative (ASCI)Computing Initiative (ASCI)

Make the full-physics codes user friendly
to weapons analysts including set-up of
large scale problems, transferring and
storing tera-byte size files, and 3D
visualization on the desktop of these tera-
byte size files

Modify and develop codes to achieve the
speedup’s and improvements necessary
to perform full physics simulation

Develop massively parallel, high
performance computers to achieve the
ASCI 100 TeraOps computing goal by
2004

Partner with universities, to solve
computing and simulation challenges

3

SIERRA Concept
Applications share a single framework which

provides common capabilities

Application developers work in a common
software development environment

• Simplify utilization of ASCI supercomputers
• Consolidate common capabilities
• Eliminate redundant development and maintenance
• Encourage architecturally similar applications

• Uniform access to ASCI resource (program elements)
• Utilize a common source code repository
• Coordinate development efforts
• Consolidate the set of software development tools
• Share software development processes

4

Current stand-alone codes

VIPAR Parachute performance code, vortex
method coupled with transient dynamics

PRONTO Transient dynamics
Lagrangian solid mechanics

JAS Quasi-static solid mechanics

COYOTE Thermal mechanics with chemistry

GOMA Incompressible fluid
mechanics with free surface

SALINAS Structural dynamics

SACCARA Compressible fluid mechanics

ITS Radiation transport

VIPAR Parachute performance code, vortex
method coupled with transient dynamics

PRONTO Transient dynamics
Lagrangian solid mechanics

JAS Quasi-static solid mechanics

COYOTE Thermal mechanics with chemistry

GOMA Incompressible fluid
mechanics with free surface

SALINAS Structural dynamics

SACCARA Compressible fluid mechanics

ITS Radiation transport

Migration of Sandia
Application Codes

Current and future SIERRA-based codes

FUEGO/
SYRINXPREMO

(SACCARA)

SALINAS

KRINO

OPERA
(GOMA)

CALORE
(COYOTE)

ADAGIO
(JAS)

PRESTO
(PRONTO)

ANDANTE

VIPAR

ITS

5

Minimize Cost for Development,
Maintenance, and Porting to

New ASCI Resources
FUEGO/
SYRINXPREMO

(SACCARA)

SALINAS

KRINO

OPERA
(GOMA)

CALORE
(COYOTE)

ADAGIO
(JAS)

PRESTO
(PRONTO)

ANDANTE

VIPAR

ITS

SNL
Red Janus

LANL
Blue Mountain

LLNL
Blue Pacific

SNL
Cplant

SNL
Red Storm

LLNL
White

LANL
Q

Physics dependent algorithms
(i.e. mechanics)

Physics independent algorithms
Computer dependent capabilities

6

SIERRA Framework Capabilities

User Input Parsing

Linear Solver I/F

Bulk Mesh Data I/O
Finite Element Services

Field Management
Mesh Management

Field and Mesh Comm.
Mechanics Management

Master Element InterfaceApplication’s Master Elements

Mechanics Interface

Mechanics Interface

Application’s Mechanics “A”

Application’s Mechanics “…”

Dynamic Load Balancing

Volume/Surface Transfers

H-Adaptivity

7

Finite Element Services

• Fully unstructured mesh
– Nodes, Edges, Faces, Elements

• Fields associated w/ interpolation, integration
• Master Element Interface, not implementation

– Element topology
– Parametric coordinate mapping
– Interpolation
– Numerical integration
⇒Implemented and shared by application developers

8

Mesh Management
• Unstructured mesh

– Arbitrary mesh object connections
– Overlay element topologies (hex, tet, quad, …)

• Dynamic creation/deletion of mesh objects
• Subsets of mesh objects

– Define by part, material type, boundary, constraint, …
– Define unions and intersections of subsets
– Apply algorithms to specified subsets

• Fully distributed mesh data structure

9

Field Management
• Application defined fields (a.k.a. variables)

– Text name
– Type (int, real, vector, full tensor, symmetric tensor, …)
– Aggregate types (e.g. collection of material variables)
– Optionally associated with a master element

(interpolation field, integration field)
– Associated with a subset of mesh objects

• Memory management for field values
– Only allocate for the subset of mesh objects
– (field , mesh-object ∈ subset) → allocated value
– (field , mesh-object ∉ subset) → NO value

10

Mechanics Management
• Mechanics Modules (supplied by Application)

– Algorithms, fields and parameters for a “physics”
– Applied to specified subset of mesh objects
– Parameters for each subset (material properties,

boundary values, …)
– Uses zero-to-many master elements

• Multiple mechanics modules
– Coupled via shared fields and mesh subsets
– Hierarchical nesting of mechanics modules, e.g. a

material mechanics nested within an element
mechanics

11

Mechanics Module Hierarchy

Domain

Procedure (time step control)
Region A

(single step of physics A)

Mechanics

Mesh and Fields

Region B
(single step of physics B)

Mechanics

Mesh and Fields

Transfer

12

Bulk Mesh Data Input/Output

• Bulk Mesh Data Input/Output Services
– Parallel IO for mesh topology and field values
– Output files for post processing / visualization
– Restart

• Simple application interface, specify:
– What files for input/output
– Which mesh subsets and fields
– When to output

• Transparent access to multiple file formats
– ExodusII (SNL), DMF (ASCI Tri-Lab), …

13

User Input Parsing

Application’s
Mechanics

Parameter
Values

User

User
Input File

Command
Specifications’
HTML Pages

Generate
Documentation

Command
Specifications’
XML Database

Query
Specifications

SIERRA
Parser

Parse
Commands

Command
Registration

14

Finite Element Interface (FEI)

Aztec ISIS++

Spooles

PETSc

Others

Linear Solver InterfaceElement, Boundary, and
Constraint Contributions

Solution Values

Application Mechanics

Linear Solver Interface

15

SIERRA Framework
Advanced Capabilities

• Dynamic Load Balancing
– Automatically balance computational load among

processors of a massively parallel computer
– Critical for efficient use of ASCI computers

• Volume/Surface Transfers
– Couple independently developed mechanics
– Critical to solve complex multiphysics problems

required for Stockpile Stewardship
• Adaptivity (of mesh)

– Automatically improve accuracy of solution
– Critical for confidence in problem solutions

16

Coupled Fluid/Thermal
Problem Layout

• Applications divided over wall and fluid
– Calore solves for temperature in all regions
– Fuego solves for velocity and delivers to Calore

Wall

Fuego Region (fluid)

Calore Region (wall + fluid)

Fluid

17

Coupled Calore/Fuego
(Thermal/Flow) Pipe Flow Problem

Calore
• Mesh both pipe and fluid
• Transfer fluid temperature

to Fuego

Fuego
• Different mesh for fluid
• Transfer fluid velocity to

Calore

18

Electron Beam Rastering
8 Proc Dynamic Load Rebalancing

Movie

19

Summary

• SIERRA Framework Services
– Distributed Mesh, Field, and Mechanics Management
– Communications, Solver Interfaces, I/O, Input Parsing
– Dynamic Load Balancing, Transfers, H-Adaptivity

• SIERRA Software Development Services
– Configuration Management & Regression Testing
– Requirements Management & Verification Testing

• Minimize total life-cycle cost for the set of
SIERRA-based ASCI Application codes

20

Fault Tolerance in FY03
Requirements

• Gracefully handle application faults
– Iterative solver fails to converge
– Distorting element inverts (negative jacobian)
– Non-catastrophic bug, e.g. C++ exception thrown

• Provide application with an opportunity to
– Recover, e.g. roll-back current time step
– Gracefully exit, e.g. clean post-mortem data dump

21

Fault Tolerance in FY03
Concept

• Introduce parallel “exception” handling
capability in the SIERRA Framework
– Register exception code with a handler (callback

function) ~ signal handlers
– Set exception code on any processor
– Next collective communication call the associated

handler on every processor
• C++ exception catch blocks can set the

exception code
– parallel exception handling if caught before the next

collective communication

22

Fault Tolerance in FY03
Implementation

• MPIH: Collective message-passing w/handlers
– Developed by Dr. Robert van de Geijn / UT-Austin

under SNL contract
– Specifications from SNL / Carter Edwards
– Uses “pure” MPI, no machine dependent signals
– Low overhead and no extra message data!
– Includes the essential sparse all-to-all variable

length message collective operation
• MPIH status

– Currently undergoing software quality assurance
(SQA) porting and testing

